
 Page 1/11

 ICD Management (ICDM) tool for embedded systems on aircrafts

Miguel Ángel Mozas Pajares1, Carlos Murciano Díaz1, Ismael Lafoz Pastor1, Carlos Fernández de la Hoz1

1: AIRBUS MILITARY, Paseo John Lennon, s/n 28906 Getafe (Spain)

Abstract: In the scope of on-board systems
development and integration for aircrafts, ICDs
(Interface Control Document/Description) are
fundamental sources of information at same level
that the functional requirements.

ICD description must include feasible (bus capacity
not exceeded, processing load under specific limits)
and accurate (data precision, data retransmission
rate, data consistency) inter-connectivity
mechanisms, to support the application requirements
needs, as well as the information must be easy to
update and to maintain.

On the other hand, DOORS (IBM) is a tool
specialized on requirements management. It faces
with aspects as traceability, version control, security
(access control), changes control, data persistency
and accessibility. DOORS is widely used and it is
recognized as a reference tool in the scope of
aeronautic developments.

Nevertheless, ICD information usually is not
managed with DOORS. The reason can be found in
the specificities of the nature of ICD information,
which suggests other approaches more suitable than
DOORS.

The alternative approaches are very diverse but
most of them focus on handling information typified
according to specific meta-models for ICD:
databases, customized spreadsheets, and tabular
descriptions. But whatever is the solution, it must
address also, by its own means, the features of ICD
derived of its “requirement nature”.

This paper presents a solution based on the
integration of DOORS with a user front-end
developed with Model Driven Architecture (MDA)
and Open Source technologies. It is intended to
provide means to manage ICD data in a robust way
(guaranteeing the correctness -syntactic,
completeness, non ambiguity- of data, changes,
versions, dependencies, …) and additionally, to
provide mechanisms to focus the effort on the data
transformation rather than on the manual elaboration
of derived artefacts.

Keywords: ICD managenent, tool integration,
requirement management.

1. Introduction

ICD Management System (ICDMS) is an
infrastructure aimed to manage the edition, the
publication and the operation of ICD data in an error
free, controlled and efficient manner.
The main features are:

 ICD edition

 ICD data verification

 ICD data analysis

 ICD data transformation

 ICD documentation

 Master repository

 Access control

 Configuration and change control

 Traceability

 Reuse management

1.1 ICD into the Aircraft Development Life-cycle

ICD is a key piece of system definition and system
development. Its relevance comes from the role it
plays in the different phases of the development
process: ICD data is a requirement for the
Equipment (Software and Hardware) under
development. Additionally, it can be used as an input
for definition of Integration test, for definition of
Equipment/Software test, and for testing (Test Bench
configuration, including bus analyzers and Flight
Test instrumentation).

Figure 1: Impact of ICD in the development life-cycle

Because of its position in the development chain,
errors or misunderstandings on ICD impact widely
along the development process. The early detection

 Page 2/11

of incorrectness and incompletness becomes an
essential need to guarantee the efficiency of the
development activities.

1.2 Nature of ICD data

ICD information is strongly typified. Practically any
ICD description fits with one among a limited group
of description pattern.

For complex systems, the number of information
elements which are associated with ICD is very high
(hundred of thousands of items).

Inside an organization involved in aircraft or systems
development, it is quite usual to face with the need
of reusing ICD information from one development to
another, either exactly the same information or a
variant of it.

As it has been said, ICD is a requirements source for
Subsystems and Equipments. In the other side, ICD
describes design decisions intended to satisfy upper
level requirements. Therefore, ICD is deeply
embedded in the requirements chain.

Sometimes, ICD data have a high degree of
volatility along the life cycle of the system
development.

ICD volatility acts like a multiplicative factor over the
normal error tendency.

1.3 ICD data operation

The artefacts derived from the ICD information are
strongly typified as well. The elements carrying out
the transmission are typically in charge of the
transmission and reception themselves, of the
packaging and un-packaging of the information, and
of the transformation of raw data to engineering
units, as handled by the computer (transference
syntax <-> local syntax). The construction of the test
environment and the definition of test cases use
exhaustively and systematically the ICD information.

1.4 Challenges and opportunities

Taken into account the characteristics mentioned
previously, it is possible to identify important
opportunities to optimise the efficiency in the
management and the usage of ICD information.

The early detection of errors in the phase of ICD
definition avoids the propagation of those throughout
the development process where, on the other hand,
it is more difficult the detection and diagnosis of the
problems.

The origin of the problems can be of different nature:
errors in the definition, inconsistency, incompletness,
errors in the version control, errors in the control of
changes or errors in the interpretation of the
information, derived from the ambiguity in the
expression of ICD definitions.

Some of these causes can be controlled by means
of classic procedures for change control, version

control and traceability (requirement management).
Nevertheless, the ability to avoid other problems
depends on the capability to analyse the correctness
of the ICD definition.

Thus, the definition of a formal language (ICD meta-
model), specialised for ICD description, appears like
a fundamental tool to allow the definition precise and
no ambiguous, of ICD. It is useful to facilitate the
early verification of ICD, but also to analyse the
implementation feasibility (load analysis), and to
generate, systematically and automatically, the
artefacts produced from the ICD.

Taking into account the massive volume of
information being involved, such automatic
generation can suppose very significant savings in
the development efforts.

Moreover, the effective management of the ICD
reusability allows saving important efforts on
definition, development and verification.

1.5 Development environment/process extension

The purpose of the proposed approach is to achieve
a powerful environment to manage ICD, by means of
the integration of well-known, available and
established tools, technologies and processes. The
idea is to take advantage of the knowledge in on-
going practices and tools, and to extend it in a
smooth and undisruptive way.

In any case, we would like to emphasize the idea
that having the appropriate language (formal), and
the appropriated means, the artisanal way of
developing ICD dependent products, can be
substituted by a formalized practice that allows to
improve drastically the efficiency, by providing
powerful helps for correct ICD definition, and for the
automatic creation of derived products
(transformations). In fact, we are pointing the
opportunity of introducing MDA on these scenarios.

1.6 ICDMS extension

Obviously, the current solution does not support all
the possible ICD definition casuistry. Taken it into
account, the development has been undertaken by
applying an MDA approach, in order to be able to
extend the ICDMS capabilities by working, basically,
in the ICD meta-model extension.

2. Technology

The proposed solution is based on the integration of
the following technologies and tools:

2.1 DOORS

DOORS 8.2 is used as Master repository with
Requirements Management capabilities

 Access control,

 user management,

 Page 3/11

 change/version Management,

 traceability …

Why DOORS? We will not try to justify the use of
DOORS as opposed to other alternatives in basis of
its intrinsic features, but in fact, it is probably the
most used tool for requirements management, in the
scope of aeronautic systems development.

The interconnection between DOORS and ICD-UI
has been defined to keep them as uncoupled as
possible, in order to allow the substitution of DOORS
by another alternative product.

2.2 Eclipse

Eclipse is a multi-language software development
environment comprising an IDE and an extensible
plug-in system.

2.3 Eclipse Modelling Framework (EMF)

The EMF project is a modelling framework and code
generation facility for building tools and other
applications based on a structured data model. From
a model specification described in XMI, EMF
provides tools and runtime support to produce a set
of Java classes for the model, along with a set of
adapter classes that enable viewing and command-
based editing of the model, and a basic editor

EMF framework includes a meta-model (Ecore) for
describing models and runtime support for the
models including change notification, persistence
support with default XMI serialization and a very
efficient reflective API for manipulating EMF objects
generically.

The EMF code generation facility is capable of
generating everything needed to build a complete
editor for an EMF model. It includes a GUI from
which generation options can be specified, and
generators can be invoked. The generation facility
supports regeneration of code while preserving user
modifications.

2.4 Object Constraint Language (OCL)

OCL is a formal and declarative language that allows
defining constraints any meta-model that cannot
otherwise be expressed by diagrammatic notation. It
is used to complement Ecore meta-model definition.

It also allows defining model analysis algorithms,
and elaborating object query (filter) expressions.
These features are used for implementing the
ICDMS “analysis” and “search” capabilities in a
declarative –no programmatic- way, closely
connected to ICD meta-model definition.

In fact, when used for defining model constraints and
model analysis algorithms, OCL expressions are part
of the meta-model itself.

ICDMS adds some useful features to standard OCL:

 Applying to any object: is("type"): it returns
true if the object type is "type". It is an alias
for oclIsTypeOf

 Applying to ICDObject: from(): it returns the
set of entities that depend on it, parent(): it
returns the parent of it (the object where it is
defined in)

 Applying to string: match("expression"): it
evaluates matching with regular
expressions, toInteger(), toReal(), toLower(),
toUpper(),.

 Applying to Real: abs(),
exponential(“power”), round(), floor().

 Applying to Integer: abs(), div(), mod()

2.5 Template engines

A template engine is software or a software
component that is designed to combine one or more
templates with a data model to produce one or more
result documents. A template processor is used in
Template Oriented Programming. A result document
is any kind of formatted output, including documents,
web pages, or source code …

Figure 2: Template engine

The usage of template engines provides some
benefits:

 encourages the usage of patterns for design
and coding, increases the degree of reuse
and reduces the probability of errors
introduction

 enhances productivity by reducing
unnecessary reproduction of effort
(Automatic product generation)

 enhances teamwork by allowing separation
of work based on skill-set (e.g. … application
domain vs. deployment domain). (Role
specialization: Each one do what it better
knows)

The usage of templates provides some benefits:

 Facilitate implementation and documentation
of patterns

 Set bounds to error introduction

 Page 4/11

There are some circumstances that make a scenario
more suitable to be managed with templates:

 A simple pattern for the solution can be
found

 The ratio between the effort to develop and
run the template and the effort to develop
the product is low or very low

 The problem is typified

 It is sure or foreseeable that the same
mistake will appear many times

2.5 XMI/XSLT/XSL-FO

The XML Metadata Interchange (XMI) is an
standard for exchanging metadata information via
Extensible Mark-up Language (XML). It can be used
for any metadata whose meta-model can be
expressed in Meta-Object Facility (MOF).

The most common use of XMI is as an interchange
format for UML models, although it can also be used
for serialization of models of other languages. In fact,
this is the format used by EMF editors to support
data persistency for Ecore models.

XSLT (XSL Transformations) is a declarative,
XML-based language used for the transformation of
XML documents into other XML documents.

For parsing XSL, we use MSXML with some jscript
extensions to make easier the XSL template design.

XSLT is chosen for XML to XML transformations.

XSL-FO is a facet of XSL, specialized in formatting
XML data. It is chosen as a basis for ICD
documentation generation.

2.6 Smarty

Smarty is a template engine for PHP. It is chosen for
XML to no-XML transformations (source code …).

A special XML parser (written in XSL and PHP) has
been developed to provide PHP input data to Smarty
from XMI.

2.7 Altova® StyleVision®

It is an application for graphically designing and
editing proprietary style-sheet (SPS) that can be
used for generating XSLT style-sheets based on the
SPS design (Both XSLT 1.0 and XSLT 2.0 are
supported.). The XSLT style-sheets can be used
outside StyleVision to transform XML documents into
outputs such as HTML, PDF and RTF.

3. ICDMS Architecture

ICDMS comprises two complementary aspects: ICD
data management and ICD data transformations.
They are connected through the XMI representation
of ICD data.

3.1 ICD data management

One of the key aspects of this - open source based –
solution is the integration with DOORS.

Figure 3: ICDMS Architecture. Data Management

The basic way to interconnect ICD-UI is invoking
DOORS-DXL script execution through the available
DOORS-COM interface, combined with the usage of
simple XML temporary interchange files.

Figure 4: Data transference. ICD-UI <=> DOORS

Moreover, because of some poor performance
aspects of DOORS, most of the processing has
been allocated to ICD-UI, in order to the keep the
operation time response within acceptable margins
for user-interface based applications.

Anyway, the mechanisms to connect and to
synchronize the front-end with DOORS have been
designed to guarantee the robustness of session
protocol.

3.1.2 ICD User interface (ICD-UI)

The front-end application (ICD-UI) has been
developed with EMF, based on the Ecore meta-
model and OCL analysis, following principles MDA.

The manual implementation of ICD-UI features has
been undertaken by means of generic programming
techniques (EMF reflective API) and user preserving
sections in order to be as independent as possible
from the details of the meta-model and the
consequent EMF automatic code generation.

 Page 5/11

The programming language is Java.

Available Eclipse plug-ins have been considered,
and used when appropriate.

Figure 5: ICD-UI Building

3.2 ICD data transformations

The nature of ICD (massive and strongly typified
information) and of its usage (many and
heterogeneous users -system/software
development, test benches configuration, on-
ground/flight tests-; and reduced number of
transformation patterns) makes it very suitable to be
managed by means of automatic transformations,
that allow to put the effort on the design of generic
and reusable patterns.

The template engines used so far are MSXSL for
XML to XML transformations (XSLT), and Smarty for
others.

Figure 6: ICDMS Architecture. Transformations

4. ICD Meta-model

For the elaboration of ICD meta-model, previous
knowledge of traditional ICD tools (ALBATROS,
EPT-ICD, eICD …) have been taken into account.

The structural aspects of the meta-model for ICD
(entities, attributes, relationships, cardinalities …)
are written in Ecore, and they are mostly based on
the entity-relationship paradigm. Additionally, the
specializations are described by means of
inheritance relationships, following an object-
oriented approach.

The top-level container entity is the Module that
represents the unit of information under configuration
control. A module can depend on another for its
definition, but the dependency cannot be circular.

There is a section for generic ICD information and
others for the description of specific aspects of
different types of communications.

Inside the generic section, there are element
intended to describe data layout (message, signals
...), data scaling and communication architecture
(systems, subsystems and networks).

The specifics sections refine the definitions made on
the generic one, using an extension mechanism
based on inheritance relationships.

4.1 Entity-Relationship paradigm

Entity-Relationship model is used to define ICD
meta-model in order to enable normalised and
flexible ICD descriptions that avoid the redundancy
and facilitate the reuse.

4.1.1 Entity

This class is the base for any entity defined in the
meta-model. An entity is the representation of a
concept, defined by its attributes, which represents
the inherent characteristics of the element, those
that it has derived from its own nature.

An entity has independent existence and is uniquely
identifiable.

4.1.2 Relationship

A relationship is the representation of a
unidirectional tie between two entities. The
relationship defines attributes that only exist as
features of the relationship, so such attributes are
not inherent to the related entities.
A relation can be solved by reference or by
containment (that is called in-site declaration).
In the first case, the referenced element is defined in
some other part of the model. The reference "with"
(not containment) of the specialized relationship is
used.
In the second case, the referenced element is
defined inside the relationship. This is useful, and
facilitates the management of the model, when the
referenced element is only relevant for the entity that

 Page 6/11

references him. The reference "owns" (containment)
of the specialized relationship is used.

4.2 Data Layout

A Structured class represents a data layout
definition composed by a set of lower level
information elements arranged over a bit stream. For
each component, the start bit and the cardinality (in
the case of a fixed length array of elements) is
specified.

The Message is the highest level of data layout
definition.

The Signal is the lowest level of data layout
definition. This element carries the information.

Figure 7: ICD meta-model. Data layout definition

There are some constructs intended to support the
description of scenarios for special data layout
definition.

Header is a class that allows defining a set of
alternative data, with a common part. The concrete
data occurrence is indicated by a discriminator field,
allocated in the common part.

Figure 8: ICD meta-model. Alternative data

Variable-Array is a class that allows defining a list of
elements of the same type associated to a counter
field. The value of the associated counter, allocated
in the same message, defines the length of the
concrete list.

4.3 Data Coding

ICD meta-model supports the definition of the rules
to code data. In the case of basic coding, it is
declared by the value of property coding of Signal
class. This property is a tagged type that includes a
number of well defined rule identifiers:
twoComplement, TNOctal, TNAlphaOctal, BCD,
IEEE754, UTF7, UTF8, UTF16, ASCII, ISO_8859_1,
BAM.

There are other meta-model elements, which can be
associated to Signal class, intended to define other
coding rules:

Figure 9: ICD meta-model. Signal scaling

Lineal is a class that allows to associating a lineal
transformation to an integer data. The slope of the
transformation can be expressed by means of the
lsb (less significant bit weigh) property value, when
definition focuses on data accuracy, or by means of
msb (most significant bit weigh) property value,
when definition focuses on the bottom scale value.

Enum is a class that allows associating a tag set to
an integer data.

LUT is a class that defines a data coding by
aggregation of a number of non-overlapped value
ranges with associated Lineal-like scaling.

 Page 7/11

Figure 10: ICD meta-model. Complex scaling

4.4 Communication Architecture

ICD meta-model allows the definition of
communication structures with different level of
complexity:

Bus is an aggregation of Message Relationships.
All the Message Relationships in the same Bus
share the same addressing space.

Network allows to link a number of Equipments that
interchange the messages related from a Bus.

Figure 11: ICD meta-model. Network

System allows to aggregate Networks and other
Systems in order to define elements that are more
complex.

Figure 12: ICD meta-model. System

4.5 Specific packages

There are packages that include the specificities of
concrete types of ICD. Following is the list of ICD
supported so far:

 ARINC 429,

 MIL-STD 1553,

 AFDX,

 ARINC 653,

 Ethernet

 Analogue and Discrete signals.

5. ICD-UI features

ICD-UI provides user with access to all ICDMS
features. It means that user does not need work
directly with DOORS user interface.

User friendliness tries to be one of the main
strengths of ICDMS. Because of that, we have put
extreme care to develop an user graphical interface
intuitive, easy to use, and familiar for most of the
addressed users, avoiding heavy procedures based
on series of forms.

Instead, we have chosen an interface based on trees
and tabular windows, that provides mechanisms for
fast edition (short-cut, copy-paste, drag-drop) and
ICD data overview.

5.1 Browser pane

 This element (the top-right one) contains two
tabs: the proper ICD Browser window,

 and a Progress View window.

The first element in the ICD Browser window is the
tree of entities inside the selected ICD module. Each
tree node can be expanded or collapsed.
The selected module is the selected one in the
Views pane (the left one).

 Page 8/11

Furthermore, all modules on which the selected one
depends, either directly or indirectly, are showed by
means of additional trees.

The Progress View window shows the execution
status of tasks that are running in background.

5.2 Properties pane

This element contains the proper Properties window
(on the bottom right), and sometimes, other optional
windows (Console).

The Properties pane gives access to the value of the
attributes of the selected element for edition.

The "Selected element" is the last one that has been
selected either in ICD Browser or in Views pane.

5.3 Views pane

This element contains several tabs. Two of them
(General and Message) have a common behaviour
on configuration capabilities.

Since both are based on a tabular window, where
rows represent a set of elements, and columns
represent the element properties, both take
advantage of the same filtering and ordering
features.

There is a status line, on the top of Views pane,
intended to show some information related with the
active Module like write permission, synchronization
with Database status or Control Configuration data
(Baseline identification).

5.3.1 Search view

This is a complex view, composed of two parts:

 a query console and

 a search result window.

The search result window is a tree-table window that
shows the findings of the last query. It allows
inspecting both the backwards and forward
dependencies of found items.

5.3.2 Information view

This element is intended to log the results of
checking and analysis of ICD. It is a reactive window
that allows to select in the Browser the entity
affected by each information entry just clicking on it.

5.3.3 Problem view

This element is intended to show any kind of error
reports.

It is opened automatically when a problem occurs
while loading a model.

6. ICDMS Features

6.1 Module management

Modularity is a fundamental aspect of ICD
description that affects the performance of the

deployment (size of DOORS formal modules affects
the operation response time) and mainly on the
reusability. It has been carefully taken into account in
the meta-model design.

A Module is an information assembly that is a
configuration control unit (see ICD meta-model
description).

Each Module under configuration control
("controlled") is stored in a corresponding DOORS
Formal Module. Besides, either "controlled" or not,
all Module are stored in a XMI file (EMF feature).

It is possible to build a secure XMI file (controlled
files) for controlled Modules. These files include a
checksum that allows detecting undesirable changes
in the content. These files are useful to sharing ICD
information without the need of using DOORS.

Obviously, controlled files are not suitable for ICD
edition.

6.1.1 Module dependencies

ICD Meta-model defines how ICD can be described
by means of a set of related modules.
Each Module can depend (always explicitly) on other
controlled modules, but circular dependencies are
forbidden.

Each referenced module is loaded automatically as a
resource (additional tree into the Browser Window).

A frozen version of a module (baseline) cannot
depend on a no frozen one.

There cannot be dependencies between elements
into Modules that are not directly dependent.

A Module dependency cannot be destroyed while
there is some relationship between their elements.

6.1. Load a Module

It is possible to load controlled or uncontrolled
Modules (Open / Open checked module).

A controlled Module can be loaded either from
Database of from a controlled file.

When loading a Module from Database, It can be
selected a Baseline version or the "current" one (the
last working version, not frozen).

6.2 ICD edition

6.2.1 Write permission

When working with an uncontrolled Module, the
permissions are the same as for the underlying XMI
file. The user can manage it with file system. In that
case, ICDMS is not responsible about concurrent
edition.

When working with a controlled file, it is forbidden to
modify it. Anyway, the user could do it changing the
XMI file properties, but the file would lose its
"unmodified" condition so, it will not be any more a
correct controlled file.

 Page 9/11

When working with a controlled Module from
Database, The menu option (lock/unlock) can be
used to switch the write permissions. Only one user
each time is granted with writing rights.

This mechanism, coordinated with DOORS, prevents
form collisions while editing a module.

6.2.2 Create Element

All the elements belong to a containment hierarchy
that starts with a Module element. A new element
can only be created below an existing one.

The creation of a new element is done by calling the
"New Child" or "New Sibling" options of the
contextual menu whereas the parent or sibling entity
is currently selected.

With respect to the selected element, only the
adequate types of element, according to ICD Meta-
model, can be created.

It must be taken into account that other constraints
not defined in Ecore meta-model, but in OCL
constraints definition, can apply, but these are not
controlled during the creation phase.

6.2.3 Modify Properties

The attributes of the selected element can be read
and modified in the Properties Pane. Some of the
constraints for the attribute values are declared in
the Ecore Meta-model definition and are managed
by the Properties Pane.

The "with" attribute of relationships is quite special. It
represents the relation with another existing entity.

When "with" attribute is selected for change, the
Property Pane provides a list with all the entities
suitable to be selected, extracted from the own
Module and from the Modules on which it depends
directly. Alternatively, the related entity can be
dragged and dropped over the relationship.

6.2.4 Delete Element

When deleting a reference to an entity, the
referenced entity is not deleted.
When deleting an entity, the references to the entity
are also deleted.

The user is not warned when deleting a referenced
entity, nevertheless, that condition is shown by
means of a colour code for the nodes in the Browser
view tree.

6.2.5 Copy or Clone

Strictly speaking, no copies of element can be done,
because the element identifier value must be unique.
So copies become on a clone action. A new element
with different identifier but with similar characteristics
is created.

There are two procedures to clone an element:

 Copy the element and paste it in the
desired/allowed location

 Drag and drop (while pressing Control key)
to the desired/allowed location

Note that when dragging and dropping an entity to a
relationship, the entity is not cloned, but a reference
is created inside the target relationship.

6.3 Configuration control

Configuration control is delegated to DOORS. It is
possible to request all the actions related with this
feature from ICD-UI.

6.3.1 Create Module in Data Base

The uncontrolled Module loaded will be introduced
into the Database.

A new DOORS formal module will be created in the
specified path, with the same name as the Module
and with equivalent contents.

6.3.2 Create Baseline

This action allows creating a DOORS baseline for a
module. It is possible to define a suffix for the
baseline tag and to introduce a comment.

6.3.3 Create Controlled File

This action allows creating a controlled file from the
loaded Module.

6.4 Change tracking

We have decided not to use DOORS-CPS for
change management directly, because its working
way does not match with the problematic of ICD
change. Nevertheless, change tracking is based on
module and object history DOORS features,
complemented with some extensions to manage
change request identifiers.

It is assumed that the management of change
control (proposals, discussion, planning ...) is done
outside ICDMS.

Once a change has been planned and so, it must be
implemented, the affected controlled Module must
be loaded and unlocked.

For each identified change, a change session will be
opened. The menu option Change Request (init-end)
can be used to switch change request session status
(opened-closed).

The user is invited to introduce the change request
identifier (free format). All changes made in the
module from this moment until the session is closed,
are stored in the History of DOORS, associated to
the change request identifier.

The change session can be aborted at anytime. In
that case, all the ongoing modifications will be
cancelled.

Each time a change session is closed, the changes
are stored in the Database and a comment,
associated to the change request session, can be
introduced.

 Page 10/11

6.5 ICD Verification

All the constraints that apply to ICD data are defined
formally either in the ICD meta-model, or in the
associated constraints (OCL) file.

There are three different verification points, where
different checks are performed :

 loading the model,

 running "Validate" command

The first verification of ICD model is done when it is
loaded.

A check about correctness of the loaded file (XMI) is
performed against the XML schema that has been
derived form the ICD meta-model.

If there is any problem, the model is loaded
incompletely, and the problems messages are
shown in the Problems View.

This kind of problems should not happen frequently
because they are due to a bad file construction.

Nevertheless, it can be common while tuning
procedures to import external data into ICDMS.

Some ICD model constraints derived from ICD meta-
model are not reflected in the associated XML
schema so, they cannot be detected when loading
the model, and cannot be automatically avoided
while editing the model. These validations must be
requested explicitly, and the result is shown in the
Information View.

6.6 ICD Analysis

It is possible to do some automatic analysis over ICD
data. This analysis is intended to provide useful
information for the system/ICD designer.

The information provided is of the following nature:

 Transmission load of physical resources

 Process load of equipments/subsystems

 Growth capability (message addressing,
payload, processing, transmission,
connectivity ...) …

The analysis must be requested explicitly, and the
result is shown in the Information View.

6.7 Impact analysis

Additionally to the automatic load analysis, it is
possible to undertake the impact analysis with the
help of ICDMS.

There are two main ways to do that at different level
of detail:

 By inspection of inter-Module dependencies

 By using the capabilities of Search Window

For the finest dependency analysis, first select in the
Search Window, the entities under inspection. Then

select "reverse" mode to get the set of entities
dependent on those.

6.8 Queries

It is possible to make sophisticated queries over ICD
model data. The result of such queries is showed in
"Search View" window. The syntax to build the
queries is OCL. It is recommended to get a good
knowledge on it. Moreover, it is encouraged to get a
good knowledge about the ICD meta-model to build
the queries.

6.9 ICD data transformations

So far, we have exercised transformation for a series
of derived products:

 Source code for Input/Output (C++ and Ada)

 Test bench (SEAS) configuration files (XML)

 Source code for Test case
stimulus/acquisition implementation (Ada)

 ICD documentation (HTML)

 Flight test instrumentation configuration

Nevertheless, probably the list is not complete and
other suitable transformations can be found (e.g. bus
analyzer configuration).

6.10 ICD documentation

The documentation of ICD data for publishing is
produced as the result of an special ICD data
transformation, where the input is the ICD model
(XMI), an the template is written in XSL-FO.

Because of the difficulties of writing XSL-FO
transformations for complex document formats, we
have considered the convenience of using a
complementary tool to support that task.

After a light assessment of ALTOVA StyleVision and
TOPCASE GenDoc, we have chosen the first one
because of his greater maturity.

7. Return of experience

The Pilot cases successfully using this ICDMS are:

 the Aircraft Management Information System
of the A330-MRTT for the Ethernet data bus
interconnection in the code generation and
the test benches configuration, and

 the Boom Control and Computing System
and the Multi-Function and Control Display
of the ARBS in ARINC-429, CANbus, MIL-
STD-1553, Analog and Discrete signals, for
the code generation, the test benches
configuration, and flight tests.

8. Conclusion

In this paper, we have presented the current state of
the ICDMS. It should be stressed that many design

 Page 11/11

decisions have been made based on previous usage
of ICD tools in the area of data structure.

The innovating issues are based on incorporating
new approaches (MDA) and mature tools like
DOORS, Eclipse, EMF, Ecore, XML, XSLT, MOF,
OCL, … Those have provided features like: tool
construction from a meta model, GUI interface in
tabular format including edition, check and search
features based on OCL, ICDs handling in the same
way as requirements (traceability and impact
analysis), reuse of ICDs to deal with the product line
topic, data model loosely coupled to the output data
transformations, templater based approach for
transformations.

These features provide a highly scalable and
configurable tool to specific domains even different
than the aeronautical.

A future extension of the capabilities of this platform
could be the integration with UML design capabilities
(already available on Eclipse/TOPCASED) to
complement the ICD static description with protocol
information, described in terms of state-machine,
and using ICD data (messages) as protocol data
units.

9. Acknowledgement

Special thanks to the EADS Research & Technology
network (GIN4 - RTG14) by its contribution inside
the OBSYS demonstrator, the technology room
where the ICDMS grew up.

Also mention this work was supported by active
participation of the AIRBUS Military organisation by
providing a lot of comments to improve the tool. In
addition, we wish to acknowledge our colleagues in
the EADS’ Military Aircraft Systems who encourage
us to extend the ICDMS capabilities.

10. Bibliography

[1] Anneke Kleppe, Jos Warmer, Wim Bast: "MDA
Explained: The Model Driven Architecture: Practice
and Promise”, Addison Wesley, 2003.

[2] Jos Warmer, Anneke Kleppe: "The Object
Constraint Language. Getting Your Models Ready
for MDA”, Addison Wesley, 2003.

[3] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John
Kellerman, Pat McCarthy: “The Java Developer’s
Guide to ECLIPSE”, Second Edition, Addison

Wesley.

[4] Frank Budinsky, David Steinberg, Ed Merks,
Raymond Ellersick, Timothy J. Grose: “Eclipse
Modeling Framework”, Addison Wesley, 2003.

[5] John Robert Gardner, Zarella L. Rendon: “XSLT
and XPATH: A Guide to XML Transformations”,
Prentice Hall, 2001.

[6] Peter Pin-Shan Chen: “The Entity-Relationship

Model: Toward a Unified View of Data”, ACM
Transactions on Database Systems , 1976

11. Glossary

AFDX Avionics Full-Duplex Switched Ethernet

ARBS Advanced Refuelling BOOM System

ARINC Aeronautical Radio, Incorporated

CAN Controller–Area Network bus

COM Component Object Model

DXL DOORS extension language

EADS European Aeronautic Defence and Space

EMF Eclipse Modelling Framework

GUI Graphical User Interface

HW Hardware

IBM International Business Machine

ICD Interface Control Document/Description

ICDMS ICD Management System

ICD-UI ICD User interface

IEEE Institute of Electrical and Electronics
Engineers

ISO International Organization for Standardization

LUT Look Up Table

MDA Model-Driven Architecture

MOF Meta-Object Facility

MRTT Multi Role Tanker Transport

MSXML Microsoft XML Core Services

OCL Object Constraint Language

PDF Portable Document Format

PHP PHP: Hypertext Preprocessor

SLOC Source Lines Of Code

SW Software

SEAS Stimulation, Acquisition and Simulation
System

XMI XML Metadata Interchange

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSL-FO eXtensible Stylesheet Language Formatting
Objects

XSLT Extensible Stylesheet Language
Transformations

	6.2.2 Create Element
	6.2.3 Modify Properties
	6.2.4 Delete Element

